50 REASONS
to exercise

01. Lifts your mood
02. Improves learning abilities
03. Builds self-esteem
04. Keeps your brain fit
05. Keeps your body fit & able
06. Boosts mental health
07. Boosts your immune system
08. Reduces stress
09. Makes you feel happier
10. Has anti-ageing effects
11. Improves skin tone and colour
12. Improves sleeping patterns
13. Helps prevent strokes
14. Improves joint function
15. Improves muscle strength
16. Alleviates anxiety
17. Sharpens memory
18. Helps to control addictions
19. Boosts productivity
20. Boosts creative thinking
21. Improves body image
22. Gives you confidence
23. Helps you keep focused in life
24. Improves eating habits
25. Increases longevity
26. Strengthens your bones
27. Strengthens your heart
28. Improves posture
29. Prevents colds
30. Improves appetite
31. Improves cholesterol levels
32. Lowers risk of (certain) cancers
33. Lowers high blood pressure
34. Lowers risk of diabetes
35. Fights dementia
36. Eases back pain
37. Decreases osteoporosis risk
38. Reduces feelings of depression
39. Prevents muscle loss
40. Increases energy and endurance
41. Increases sports performance
42. Increases pain resistance
43. Improves balance and coordination
44. Improves oxygen supply to cells
45. Improves concentration
46. Helps with self-control
47. Lessens fatigue
48. Increases sex drive & satisfaction
49. Makes life more exciting
50. Improves Quality of Life

(c) Neila Rey | meanrat.com
The trick to real and lasting lifestyle changes

Regardless of the time of year that we decide to eat better, exercise more, or be less stressed, it can be hard to make a lifestyle change, and even harder to make it stick.

But there is a way to up your chances of success.

Experts say efforts to change are more likely to produce results if they are SMART — that is, specific, measurable, achievable, realistic, and time-based. If you’re thinking of making a change, see if your goal can pass the SMART test:

1. Set a very specific goal. For example: I will add one fruit serving — that’s half a cup, chopped — to my current daily diet.
2. Find a way to measure progress. For example, I will log my efforts each day on my calendar.
3. Make sure it’s achievable. For example, don’t set a goal of a daily 5 mile run if you’re out of shape. If you can’t safely or reasonably accomplish your goal, set a smaller, achievable one.
4. Make sure it’s realistic. It may seem counterintuitive, but choosing the change you most need to make — let’s say, quitting smoking or losing weight — isn’t as successful as choosing the change you’re most confident you’ll be able to make. Focus on sure bets: if you picture a 10-point scale of confidence in achieving your goal, where 1 equals no confidence and 10 equals 100% certainty, you should land in the 7-to-10 zone. An additional fruit serving a day is a small, manageable step toward better health.
5. Set time commitments. Pick a date and time to start. For example, Wednesday at breakfast, I’ll add frozen blueberries to cereal. Pick and regular check-in dates: I’ll check my log every week and decide if I should make any changes in my routines to succeed. Find an outside deadline that will help keep you motivated. For example, signing up for a charity run or sprint triathlon on a certain date prods you to get a training program under way.

You can make the changes necessary for a healthier, more rewarding life. The strategies offered in Simple Changes, Big Rewards (promotions/harvard-health-publications/simple-changes-big-rewards-a-practical-easy-guide-for-healthy-happy-living), a Special Health Report from the Harvard Medical School, can help you do just that.

Source: https://www.health.harvard.edu/healthbeat/the-trick-to-real-and-lasting-lifestyle-changes

© 2000-2014 Harvard University. All rights reserved.
The Exercise-Brain Connection

Did you know that your brain is incredibly dynamic? It can change its structure and function by adding new neurons, making new connections between neurons and even creating brand-new blood vessels, all in response to exercise.

Jeffrey A. Klein, PhD, associate professor in the Arizona State University School of Biological and Health Systems Engineering, shares the following insights on how exercise impacts the brain.

Exercise Improves Cognitive Function

A sedentary lifestyle affects the brain—and in turn lessens mental capacity. Sibley and Etnier (2003) found a clear connection between how much schoolchildren exercised and their cognitive performance: the more aerobic exercise the children engaged in, the better they performed on verbal, perceptual and mathematical tests. The same pattern of results was found in older adults: aerobic training improved cognitive performance (Colcombe & Kramer 2003), and active lifestyles decreased age-related risks for cognitive impairment and dementia (Yaffe et al. 2009). Not surprisingly, these cognitive effects were accompanied by clear changes in brain structure and function.

Exercise Changes Brain Function

Research shows that exercise changes brain function in a lasting manner. For example, the reduced cognitive capacity in sedentary individuals is associated with different patterns of brain activity—both at rest and while performing mentally challenging tasks—than those observed in active subjects.

Plus, compared with sedentary people, active individuals show greater baseline levels of cortical activity (Dustman et al. 1990). (The cerebral cortex helps with complex cognitive tasks.)

Exercise Changes Brain Structure

The structure of the brain can be broken down into two general components. Gray matter contains the neurons and supporting cells, while white matter consists of the axons of these neurons (nerve cell fibers) that carry signals from one area to another.

Magnetic resonance imaging (MRI) allows for the measurement of gray and white matter. MRI scans have shown that exercise boosts overall brain volume (Colcombe et al. 2006), increasing both gray matter (Colcombe et al. 2006) and white matter (Gordon et al. 2008). These changes can occur over relatively short periods of time. After learning to juggle for only a few weeks, for example, study subjects showed increases in gray matter within regions of the brain concerned with integrating visual and motor information (Draganski et al. 2004).

References


Exercise Is Key to Lifelong Learning

The adult brain, especially the hippocampus, can continue to make new neurons throughout the lifespan. The hippocampus is concerned with forming memories and processing emotion, which may help explain some of the cognitive and emotional benefits of exercise.

Interestingly, aerobic exercise can increase neurogenesis (generation of new neurons) within the hippocampus at many stages of development, including adult brains (van Praag, Kempermann & Gage 1999). The fact that the hippocampus is a critical brain structure used in memory may explain why aerobic exercise can enhance learning (Vaynman & Gomez-Pinilla 2006).
Mental Health and Exercise

Want to alleviate stress or cope with depression? Exercise may help. Increasingly, there is evidence from researchers that certain levels of physical activity can positively affect mental health. Len Kravitz, PhD, researcher and program coordinator of exercise science at the University of New Mexico, Albuquerque, takes a look at what research has discovered about the connection between exercise and mental health.

Stress
A growing body of research over the last 10 years shows that physical activity and exercise also improve psychological well-being (Dubbert 2002). Published data show that people with higher levels of fitness are capable of managing stress more effectively than those who are less fit (Hassmen, Koivula & Uutela 2000). It appears that cardiovascular exercise is the method that most benefits stress reduction. The research indicates that moderate-intensity aerobic exercise, performed three times a week (sessions lasting over 20 minutes) for up to 12 weeks, has the most influence on stress management.

Depression
The antidepressant action is one of the most commonly accepted psychological benefits of exercise. Patients diagnosed with depression have credited exercise as being an important element in comprehensive treatment programs for depression (Dunn et al. 2002). Cardiovascular and resistance exercise seem to be equally effective in producing antidepressive effects (Brosse et al. 2002). It also appears that both a one-time exercise session and chronic exercise training programs have a positive effect on people with clinical depression (Dunn et al. 2002). Research does imply, though, that the greatest antidepressive effects occur after 17 weeks of exercise, although you can observe improvements after 4 weeks (Scully et al. 1998). The effects of exercise on depression seem the same for men and women.

Anxiety
The results of over 30 published papers show a link between acute and chronic exercise and the reduction of anxiety (Scully et al. 1998). There appears to be much debate about whether low-intensity, moderate-intensity or high-intensity aerobic exercise is most beneficial. (If you're not sure at what intensity you should exercise, consult with a personal trainer.) It appears that even short bursts of 5 minutes of cardiovascular exercise stimulate anti-anxiety effects. The research also indicates that people who train for periods of 10–15 weeks receive the greatest beneficial effects.

Get in a Better Mood
It appears that cardiovascular and resistance exercise can positively affect various mood states, including tension, fatigue, anger and vigor (a psychological variable defining vitality or energy) in normal and clinical populations (Lane & Lovejoy 2001; Fox 1999). Plus, it has been shown that even a single session of 25–60 minutes of aerobic exercise (at low, moderate or high intensities) increases positive mood feelings while also decreasing negative mood feelings. Researchers need to further research resistance training to learn more about the connection between it and mood state.

References